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4 INFM, Unità di Firenze, 50125 Firenze, Italy

Received 14 June 1999 and Received in final form 4 November 1999

Abstract. High-dimensional chaos displayed by multi-component systems with a single time-delayed
feedback is shown to be accessible to time series analysis of a scalar variable only. The mapping of the orig-
inal dynamics onto scalar time-delay systems defined on sufficiently high dimensional spaces is thoroughly
discussed. The dimension of the “embedding” space turns out to be independent of the delay time and
thus of the dimensionality of the attractor dynamics. As a consequence, the procedure described in the
present paper turns out to be definitely advantageous with respect to the standard embedding technique in
the case of high-dimensional chaos, when the latter is practically unapplicable. The mapping is not exact
when delayed maps are used to reproduce the dynamics of time-continuous systems, but the errors can
be kept under control. In this context, the approximation of delay-differential equations is discussed with
reference to different classes of maps. Appropriate tools to estimate the a priori unknown delay time and
the number of hidden components are introduced. The generalized Mackey-Glass system is investigated in
detail as a testing ground for the theoretical considerations.

PACS. 02.30.Ks Delay and functional equations – 05.45.Tp Time series analysis

1 Introduction

Complex time-dependence in laboratory systems, in our
natural environment or in living beings can have a vari-
ety of origins. One of the most fascinating perspectives is
represented by the description of aperiodic fluctuations in
terms of deterministic dynamical models. In the last two
decades, much work has been devoted to testing for this
hypothesis and to reconstructing the underlying dynam-
ics under the assumption that only a scalar time-series
is available. Since the pioneering articles of Packard et al.
[1], Takens [2], and Grassberger and Procaccia [3], a sound
body of knowledge has been progressively acquired [4],
leading to the establishment of a new discipline, the non-
linear time series analysis. The general approach consists
in reconstructing the phase space from the observed scalar
data, most often by making use of the time delay em-
bedding. In a sequence of spaces of increasing dimension,
one looks for the manifestation of deterministic structures
such as finite attractor-dimension or enhanced predictabil-
ity. Unfortunately, this approach suffers from severe
limitations as soon as the dynamical complexity of the
underlying dynamics becomes relatively large.

Systems with time delayed feedback can create
arbitrarily complex dynamics already with very few
variables and rather simple equations of motion. The
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Mackey-Glass equation [5] is the best known such exam-
ple. It is a first order scalar differential equation with a
force field that depends on a past value of the variable it-
self. This model was suggested in a physiological context
(regulation of the production of red blood cells), where the
mechanism of time delayed feedback is rather common.
Further examples range from such widespread scientific
disciplines as biology, epidemiology, physiology, or control
theory [6,7]. In physics, this class of systems has been
largely ignored in the past. Only recently, time delayed
feedback has been introduced as a means to either en-
hance or suppress chaotic properties of nonlinear systems.
Examples of the former strategy are the CO2 experiments
discussed in references [8,9] and the theoretical studies
described in [10,11], while some of the control techniques
based on the addition of a delayed feedback can be found
in references [12–15].

From the mathematical point of view, time delayed
feedback leads to delay-differential equations (see [6] for
some results about the existence and uniqueness of so-
lutions of the initial value problem). The corresponding
phase space is infinite dimensional, as the initial condi-
tion is a generic function defined on the interval [−τ0, 0],
with τ0 being the delay time of the feedback loop. In prac-
tice, however, high frequency components are almost ab-
sent and thus a finite number of variables suffices to pa-
rameterize the asymptotic solutions. On the other hand,
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the fractal dimension D can be made arbitrarily large as
it has been established that D is proportional to τ0 for
sufficiently large τ0 [10,16].

As already mentioned, the direct reconstruction of
attractors from scalar data through time delay embed-
ding using Takens theorem is clearly limited to low
dimensional objects. A recent estimate [17] which takes
entropy-related folding effects of the embedding procedure
into account, shows that the minimal number of points N
required for a clear manifestation of determinism must be
larger than

√
ehDsD, where s is the required scaling range

(e.g. s = 10 represents one decade of scaling) and h is the
Kolmogorov-Sinai entropy. In practice, attractors with di-
mensions larger than 5 can hardly be recognized by time
series analysis using Takens theorem, since otherwise an
unrealistic large amount of data and an unrealistically low
noise-level would be required.

High dimensional attractors of systems with time
delayed feedback are thus practically indistinguishable
from colored noise. On the other hand, the underlying
delay-differential equation couples only a few variables, so
that it is natural to ask whether more effective techniques
exist which are able to reproduce the observed dynamics.
It turns out that a reconstruction, not of the attractor in
a proper phase-space, but of the dynamical rule in what
we call “state” space, is often easier and equally effective.

For scalar time delay systems, i.e. systems involving
a single variable, the delay time of an unknown system
was estimated from a time series with the help of ap-
propriate indicators [18,19]. Later, it was shown that the
dynamical rule itself can be reconstructed from the time
series of scalar time delay systems [20–23] and thereby
the Lyapunov spectrum [24]. Most importantly, the di-
mension of the state space does not depend on the delay
time, opening up the possibility to model and characterize
high-dimensional regimes as well.

Since the restriction to scalar time-delay systems is,
in practice, too severe, some efforts have been made
to extend the latter ideas to the case of multi-variate
time-delay systems. On a phenomenological basis, it was
demonstrated that the delay time can be estimated also
in such systems by treating them analogously to scalar
ones [25]. For a multi-variate delay system with a single
time-delayed feedback, an embedding-like approach was
applied to experimental laser-data [26]. Such a method-
ology follows from the extension of Takens theorem [27]
to input-output systems conjectured by Casdagli [28] and
later proven in [29]. For the general case of multi-variate
delay systems (with multi-variate delays) until now a
multi-variate measurement is required [30].

Our work on the reconstruction of the dynamics of
systems with delayed feedback is divided into two parts.
The first part (the present paper) is devoted to a thorough
discussion of theoretical aspects ranging from the condi-
tions for a faithful reconstruction, to the various intrinsic
approximations. The second part [31] will be instead de-
voted to the application of this technique to experimental
data of a CO2 laser with delayed feedback.

Here, we start considering the problem of mapping the
original dynamics (possibly characterized by several vari-
ables) onto scalar models under the only restriction of a
single feedback process. In Section 2 we show that the
reconstruction is possible also when the recorded variable
does not coincide with the feedback variable (the only case
previously discussed in the literature), although at the ex-
pense of requiring a larger state-space dimension md. In
Section 3, we investigate the approximations involved in
the modelization of continuous-time dynamics in terms of
delayed maps.

In the following Sections 4 and 5, we use the
generalized Mackey-Glass model as a testing ground for
the implementation of various indicators to identify the
minimal optimal model, as well as to estimate the delay
time. Local indicators such as the one-step forecast er-
ror are introduced and studied in Section 4, while global
indicators are considered in Section 5. Finally, the open
problems are briefly reviewed in Section 6.

2 Embedding theory

In this subsection, we introduce multicomponent sys-
tems with delayed feedback and discuss the possibility to
map them onto suitable scalar models. Besides address-
ing a general mathematical question (i.e. the equivalence
between different classes of dynamical equations), our mo-
tivation resides in the possibility to reconstruct the dy-
namics of a delayed system from a single scalar variable.

As anticipated in the introduction, we shall refer to
a general case with d variables. The only restriction that
we impose concerns the number of feedback processes: we
shall assume that only one variable (in our notation: the
first one) is fed back. We believe that this is a sufficiently
general standpoint to begin a meaningful study of de-
layed systems. Although the physically meaningful models
are continuous-time systems, so called delay differential
equations (DDEs) of the form

ẋ = H(x(t), x1(t− τ)), (1)

we will usually construct models which are discrete in time
and are called delayed maps (DM). The way DDEs are
implemented on digital computers is precisely by con-
structing a suitable DM and, more important, DMs are the
natural models to be reconstructed from experimental sig-
nals recorded with a finite sampling rate. More precisely,
we consider the class of d-component single-feedback DMs

y(n+ 1) = F(y(n), y1(n− τ0)), (2)

where yn ∈ Rd and the delay time τ0 is a positive
integer number. The initial condition of the DM consists
of a (d + τ0)-component vector, so that the phase space
is Rd+τ0 . Again without loss of generality, the feedback
variable is assumed to be the first component.

With reference to discrete-time systems, we now
discuss the question of reconstructing the dynamics of a
given component yk in terms of the values of the same
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Fig. 1. Illustration of the coupling of the variables in the case
where the embedding aims at the elimination of all the vari-
ables except the one with feedback. Full squares denote the
hidden variables. Open triangles denote the variable with the
time delayed feedback, which is accessible to measurement.

component at different previous times. The embedding
theorems [2,27] state that the knowledge of sufficiently
many values of yk(n) for a given k allows to reconstruct
the dynamics on the attractor. More precisely, the value
of yk(n+1) is a unique function of its 2D previous values,
where D is the attractor dimension. The essential point of
this paper is the possibility to reconstruct the dynamics on
high dimensional attractors with much less variables than
required by these embedding theorems by exploitation of
the particular structure of time delay systems.

We first derive the concept for a simple linear
dynamical system

y(n+ 1) = Ay(n) +αy1(n− τ0) (3)

where A is a d × d matrix and α is a d-component
vector. The structure itself of the above equation reveals
a difference between the first variable (the only one being
fed-back) and all the others. We thus have to specify which
variable is actually recorded, since it plays an important
role in the construction of an optimal model.

We first consider the case that the time series is a
record of y1. Reconstructing the dynamics means finding
an equation for y1(n+1). The obvious equation is just the
first component of equation (3), which, however, requires
the knowledge of all components of y. Since we assume
that they are not observed, we define all components of
y except y1 as “hidden variables”. These unknowns must
be explicitly eliminated to derive the desired dynamical
law, involving exclusively past values of y1, but as few as
possible.

In order to avoid lengthy technicalities, we will present
the derivation of the desired equation of motion in a pic-
torial way, by referring to Figure 1. Each row in Figure 1
is a schematic description of the information involved in
the application of equation (3) at a specific time. A full
square positioned in the site n of the time-lattice indicates
that all the d−1 hidden variables at time n are required in
the iteration of the DM. Let us start from the uppermost
row. As we have to determine only y1 at time n + 1 (see
the question mark in the figure) we need to consider only
one equation which in general will however depend on all
variables at time n (see the corresponding full square at
time n) and on y1 at time n−τ0 (see the triangle). As a re-
sult, we have (d− 1) (the full square) plus 1 (the question
mark) unknowns. This number is reported in column A
on the right of the figure. The net difference between the

number of available equations and that of unknowns is
instead reported in column B. We see that, in this case,
since we have considered just one equation, such a differ-
ence is precisely 1 − d. Accordingly we reach the trivial
conclusion that we cannot determine y1(n + 1) from the
knowledge of only y1(n) and y1(n− τ0).

Further information can be obtained from the past
history. When we consider the application of the dynam-
ical law at the previous time step (see the second row in
Fig. 1), all the d equations enter into play. The number
of unknown variables is (d − 1), i.e. the square at time
n− 1, while the difference between new equations (d) and
new unknowns is 1. Therefore, the addition of this new
step allows reducing the global gap between unknowns
and equations. Iterating this procedure d − 1 times will
eventually allow to reach a break-even point, when the
number of equations is equal to the number of unknowns.
This means that we have to consider d rows in Figure 1,
i.e. that y1(n+1) is unambiguously determined once y1 it-
self is known in at least two windows of length d. Formally,
we find that for m ≥ md

1, with md = d,

y1(n+ 1) = β · v(n;m, τ0), (4)

where

v(n;m, τ0) =
(
y1(n), y1(n− 1), . . . , y1(n−m+ 1);

y1(n−τ0), y1(n−τ0−1), . . . , y1(n−τ0−m+1)
)
, (5)

an expression stating that we have been able to transform
the initial multicomponent DM (3) into a scalar equa-
tion (4) with, in some sense, multiple delays. The price
we had to pay is that now the dependence on the past
values of y1 is not restricted to a single value as origi-
nally assumed in equation (3), but d consecutive values
are needed.

If τ0 < d, the 2d variables appearing on the l.h.s. of
equation (4) overdetermine y1(n + 1), since in the above
described process some unknowns are counted twice. As
we have in mind applications to models with a few com-
ponents compared to the delay, we shall not argue further
about this point. Moreover, it is instructive to see that the
dimension of the phase-space is τ0 +d in the reconstructed
model as well as in the original one: iteration of equa-
tion (4) indeed requires knowing y1(l) in the whole range
n ≥ l > n− τ0 − d. Accordingly, model (Eq. (4)) provides
a faithful reconstruction of the whole dynamics including
the convergence to the asymptotic attractor. This is to
be contrasted with the possibility offered by the standard
embedding technique to describe only the dynamics on the
attractor itself.

The advantage over the standard application of the
embedding theorem becomes more transparent if we also
notice that the number of variables needed to reconstruct

1 For the remainder of this paper we will term md the min-
imal “window size” of the model (4) that guarantees a proper
embedding.
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the dynamics is 2d, independently of the delay τ0, i.e.
independently of the phase-space dimension τ0 + d that
can be arbitrarily large. In particular, the technique can
be equally effective also in the high dimensional regimes
generally existing whenever τ0 � 1 (let us recall that the
dimension of the attractor is generally proportional to the
delay).

In the case of nonlinear DMs, the basic difference is
that the function F is, in general, non-invertible so that
the knowledge of 2d variables is not sufficient for an unam-
biguous identification of y1(n+ 1). This problem is anal-
ogous to that of determining the minimum embedding
dimension for a faithful reconstruction of the dynamics
in the standard approach. In that context, a given at-
tractor of dimension Da can be generically reconstructed
with a one-to-one correspondence only if the dimension
of the embedding space is larger than 2Da + 1. In other
words, one has to consider longer sequences in order to re-
move the ambiguities inherent to the lack of invertibility
in a generic representation. More specifically, the model
equation

y1(n+ 1) = f(v(n;m, τ0)), (6)

with two windows of length m ≥ md, and d ≤ md ≤ 2d+1,
certainly suffices to faithfully reconstruct the dynamics in
generic cases. The conjecture that 2(2d + 1) represents
an upper bound for the minimal dimension of the state-
space is confirmed by interpreting the delayed feedback as
an “external” driving (see Ref. [26]) and in turn invoking
the analogy with input-output systems like those consid-
ered by [28]. In fact, this is the content of the embedding
theorem generalized to that context in reference [29].

The feedback variable is certainly peculiar and
different from all other variables involved in the dynamical
process. It is therefore, interesting to ask oneself whether
a compact reconstruction of the model is still possible if
not the feedback variable is measured, but any other vari-
able. The answer is yes, but the number of variables to ac-
quire the necessary information is larger than before and
the proof is also rather cumbersome so that a pictorial
representation such as the one reported in Figure 2 will
be very helpful. In this case, we must distinguish among
three types of variables: (d− 2) hidden variables without
feedback (represented by a full square); the hidden feed-
back variable (cross) and the variable experimentally ob-
served (open triangle). In the first step of the procedure,
there is one more unknown variable than before (since
y1(n−τ0) is unknown, too) so that the gap between equa-
tions and unknowns is −d. Equally more negative is the
second step, since the existence of an additional variable
(the feed-back which is not recorded) prevents having a
net gain. Therefore, recursively repeating the very same
step does not allow removing all the unknowns. Neverthe-
less, we can still find a meaningful solution by modifying
our strategy as described in the third step, where we con-
sider the application of the mapping at time n − τ0 − 1.
After comparing the newly involved variables with those
already introduced in the two previous time steps, one
sees that the additional gap is equal to 3 − d. This re-
sult is strictly positive only if d ≤ 2, thus suggesting that

(d−2)+3      −d

(d−2)+2        0

2(d−2)+1    3−d

(d−2)+2        0

(d−2)+1       +1

?

A         Bnn−T

Fig. 2. Illustration of the coupling of the variables in the case
where the embedding aims at the elimination of the variable
with feedback. Hidden variables without feedback are denoted
by full squares. The hidden variable with feedback is denoted
by crosses. The experimentally observed variable is denoted by
open triangles.

this new strategy leads in general to worse results. How-
ever, from now on, one can alternate steps of the previous
and new type (see e.g., the fourth and the fifth line in
Fig. 2): this allows gaining 1 equation every second step.
The break-even point is obtained after 2d− 1 steps. This
means that the recorded variable must be known in two
windows of length 2d − 1. Accordingly, the price to be
paid for not dealing with the feed-back variable is that the
number of “variables” is almost twice as large as before.
Nevertheless, we can still consider this last result as posi-
tive, since the dimension of the space is still independent of
the delay. An important difference with the previous case
concerns the phase-space dimension. The iteration of the
reconstructed model requires now to know a single vari-
able over τ0 + 2d − 1 consecutive times, a number larger
than the initial dimension τ0 + d if d > 1. This means
that our procedure has enlarged the phase-space dimen-
sion, introducing some spurious directions. We want to
show now that the price for keeping the dimension of the
phase-space equal to the original value is the construction
of a much more complicated model. In fact, with reference
again to Figure 2, we see that the steps of type 1 do not
allow any gain only until we arrive at time n − τ0. How-
ever, from that point on the number of unknowns reduces
by one unit per single step, since the variable y1 was al-
ready taken into account, so that we eventually do not
need to go beyond time n− τ0 − d. However, in doing so,
all variables in the entire delay time are included, i.e. the
standard embedding approach has been followed.

More in general, in the case of nonlinear systems, we
expect that a model

y2(n+ 1) = f(v(n;m, τ0)), (7)

exists for m ≥ md, d ≤ md ≤ 4d− 1. However, it is honest
to recognize that one will be hardly able to go beyond
d = 2 in practical cases.

As in the standard embedding technique, the presence
of nonlinearities with the possible noninvertibility of some
functions might require doubling the number of variables
necessary for a faithful reconstruction of the dynamics.
Note that the number of spurious directions introduced
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by the DM-model in the nonlinear case is at most 3d− 1,
and therefore much smaller compared to the number of
spurious directions introduced by a Takens-type model,
which can be up to τ0 + d+ 1.

In the case of time-continuous models of the type
(Eq. (1)), a similar reduction to a scalar equation can be
developed with the difference that instead of giving rise to
additional dependences on past values of the given vari-
able, higher-order time derivatives have to be added. More
precisely, the resulting model type is

x
(m)
1 = h (w(m, τ0)) , (8)

where

w(m, τ0) =
(
x1, x

(1)
1 , . . . , x

(m−1)
1 ;

x1(t− τ0), x(1)
1 (t− τ0), . . . , x(m−1)

1 (t− τ0)
)
. (9)

and x
(i)
1 stands for the ith derivative of the variable x1

with respect to time.

3 From continuous to discrete time

In the previous section we have seen that vector-valued
delay-models can be mapped onto scalar ones by em-
bedding the attractors into suitable state spaces defined
in terms of a single variable recorded in two windows
of length md. These results provide the minimal frame-
work for reconstructing the dynamics starting from the
knowledge of just one observable. However, the exact in-
ference of the model is formally possible only when a DDE
(DM) dynamics is reconstructed in terms of a continuous
(discrete) time model.

In reality, almost all physically meaningful processes
stem from continuous time equations, while data are typ-
ically accessible as sequences of values sampled with a fi-
nite frequency. Accordingly, the typical situation consists
in constructing a DM that mimics a DDE, i.e. we have
to deal with the problem of passing from one to the other
class of models. In this section, we discuss this problem,
showing that the model mismatch implies that increas-
ingly faithful reconstructions are only possible at the ex-
pense of increasing the state-space dimension. This can be
done by lengthening either the first or the second window
of each pair.

Before proceeding to the general discussion, it is
important to stress that all the results reported in this
section are derived under the assumption that (i) there
exists a finite-dimensional attractor (this can be shown un-
der quite general conditions [6]), (ii) the attractor dynam-
ics is high-dimensional. In particular, we assume that the
length of the window-pairs is smaller than the minimal em-
bedding dimension required by the Takens theorem. This
is because, as explained in the introduction, we want to
consider cases where the usual embedding techniques fail
to provide a faithful reconstruction.

For the sake of simplicity, we first consider a scalar
DDE, ẋ = H(x, x(t−τ0)), and assume that the continuous
variable x(t) is recorded with a constant sampling time ∆
on the discrete time-lattice t0+n∆ with n ∈ Z. Let us call
x(n) = x(t0+n∆) from now on. In this framework we shall
investigate the degree of accuracy that is possible to reach
within the class of scalar DM-models. Let A(m1,m2) be
the class of analytic functions h

A(m1,m2) = {h : Rm1+m2 → R}. (10)

Consider the DM-model

x(n+ 1) = h(v(n;m1,m2, τ)), (11)

with h ∈ A, and

v(n;m1,m2, τ0) =
(
x1(n), x1(n− 1), . . . , x1(n−m1 + 1);

x1(n− τ0), x1(n− τ0 − 1), . . . , x1(n− τ0 −m2 + 1)
)
,

(12)

with window pairs2 (m1,m2) separated by a time τ0. We
quantify the accuracy of the DM-model h in equation (11)
with the help of the one-step forecast error (FCE):

σ̄(h;m1,m2, τ) =

√√√√〈(x(n+ 1)− h(v(n;m1,m2, τ)))2
〉

〈x(n)2〉 − 〈x(n)〉2
(13)

where 〈·〉 denotes a time average.
Any model h can be geometrically seen as an (m1 +

m2)-dimensional manifold in the state space augmented
by the x(n + 1) direction (we shall call it, the S-space).
The FCE is trivially larger than zero whenever the original
data lie on a manifold different from that one identified
by the model. This is an error that can be removed by
properly constructing the model. Conversely, if the data
are distributed in a broader region, i.e. also transversally
with respect to a hypothetical manifold, no exact model
can be constructed and the FCE is bounded away from
zero. This is precisely what we expect to happen because
of the model mismatch: for any choice of window (m1,m2),
the variable x(n+ 1) fluctuates in a small but finite inter-
val, so that the FCE cannot be smaller than the average
thickness of the distribution of points.

In order to clearly distinguish the latter fundamental
limitation from trivial modelling errors, it is sufficient to
define σ̄A(m1,m2, τ) as

σ̄A(m1,m2, τ) = min{σ̄(h;m1,m2, τ)|h ∈ A(m1,m2, τ)}.
(14)

2 We have introduced the notation (m1,m2) to emphasize
that the length of the two windows may be different. In that
respect, the definition of v contrasts with the one given in the
previous section.
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σ̄A(m1,m2, τ) establishes the maximum level of accuracy
that can be reached with a fixed window-system (m1,m2)
and a delay time τ in the class of DM-models A. From
now on the function h ∈ A, which minimizes the FCE,
is called ĥ and therefore σ̄A(m1,m2, τ) = σ̄(ĥ;m1,m2, τ).
We shall see that there are at least two alternative proce-
dures to increase the accuracy of the reconstruction. They
amount to considering window pairs where either the first
or the second window is increased beyond the dimension
which would be required for a corresponding DDE model.
For data from a scalar DDE, the optimal reconstruction
is trivially a (1, 1)-DDE model. We will show that the op-
timal DM for such data can be of either type of (1,m2) or
(m1, 1), respectively.

Let us first discuss the (1,m2) case. Uniqueness and
existence theorems [6] guarantee that the original DDE
model can be written as a functional

x(t+∆) = G[x(t), {x}d] (15)

where {x}d = {x(t′)|t − τ0 ≤ t′ ≤ t − τ0 + ∆}. A
simple example of the above functional dependence can
be obtained in the case of the model class

ẋ = −µx+ F (x(t− τ0)) (16)

to which both the Ikeda [32] and Mackey-Glass [5] models
belong. A formal integration of equation (16) yields

x(t+∆) = x(t)e−µ∆ +
∫ ∆

0

dt′F (x(t − τ0 + t′))eµ(t′−∆).

(17)

If x(t − τ0 + t′) is nearly constant within the integra-
tion interval, one can approximate the functional depen-
dence with a single value of the variable x(t − τ0 + t′)
within the integration interval. This amounts to construct-
ing a (1, 1)-model and the uncertainty on x(t+∆) is pre-
cisely the above introduced FCE σ̄A(1, 1, τ0), which is of
∆2-order3.

A better accuracy can be achieved if two or more
consecutive points are assumed to be known in the vicin-
ity of x(t− τ0), since their knowledge allows constructing
higher order approximations of F . Simple perturbative ar-
guments suggest that the error made in the estimation of
x(t +∆) is of the order ∆m2+1, if m2 consecutive points
are used (i.e., if a window-pair (1,m2) is considered) and
∆ is small enough. In fact, the problem of estimating
the error for fixed ∆ and m2 large enough is absolutely
non trivial and deserves a discussion by its own. Here,
without pretending to derive asymptotic estimates on the
dependence of σ̄A(1,m2, τ0) on m2 and ∆, we limit our-
selves to consider two limit cases. The first one consists
in assuming that the Fourier modes above a certain fre-
quency ωc are slaved modes, i.e. they are uniquely deter-
mined by the amplitude of the lower-frequency modes.
In this case, if the sampling time ∆ < 2π/ωc, we

3 In this section we always assume that the delay τ0 is per-
fectly known and the uncertainty is entirely due to a model
mismatch.

expect the residual uncertainty on x(t +∆) to vanish for
increasing m2, although it is not obvious to determine
how rapidly. In the opposite limit, we can assume that
the amplitude of each high-frequency mode is an inde-
pendent variable (as in a stochastic process). In this case,
the uncertainty on x(t+∆) would depend on the “power”
contained in the Fourier spectrum above the sampling fre-
quency ωs = 2π/∆ and would not decrease for increasing
m2. Were this the typical condition generated by DDEs,
one should conclude that the model mismatch is so severe
that one can never reproduce a continuous-time dynamics
with arbitrary accuracy (with the exception of m2 larger
than the minimal dimension required by the embedding
theorems for a faithful reconstruction).

An alternative approach for constructing a DM
consists in approximating the first-order time derivative
with linear combinations of the observable x in neighbour-
ing points along the time lattice. It is well known that one
can write

ẋ
(
t−(

m1

2
−1)∆

)
=

1
∆

1∑
i=−m1+1

aix(t+ i∆)+O(∆m1+2)

(18)

for a suitable choice of the coefficients ai. Upon substitut-
ing the above expression in the initial DDE and solving
for x(t+∆), we find that x(t+∆) can be expressed as a
function of the m preceding values and 1 value one-delay
unit back in time. In other words, we have arrived at a
DM of type (m1, 1), which involves an unavoidable error
σ̄A(m1, 1, τ0) ' ∆m1+1. This is again a purely perturba-
tive result which is valid only for moderately large m’s.

In both the above discussed cases, we have seen that a
discrete-time model can reproduce only approximately the
dynamics of the original continuous-time system. In com-
parison to low-dimensional dynamical systems, for which
we know that a generic ODE can be exactly transformed
into a discrete mapping (even with the additional advan-
tage of reducing the phase space dimension, if a Poincaré
section is taken), the above results look very modest. The
main reason for such a difference is that when a DDE is
turned into a DM, the phase-space is necessarily “com-
pressed” from an infinite- to a finite-dimensional one. The
compression may be practically harmless, but necessarily
involves the loss of small but nonzero interaction terms.

The two pairs (1,m2) and (m1, 1) are the limit cases
of the more general combination (m1,m2). We have been
unable to estimate directly the uncertainty in this general
case, because we failed to find an interpretation of the
corresponding model in terms of derivatives and/or inte-
grals. Nevertheless, with the help of a recursive argument
we conjecture that

σ̄A(m1,m2, τ0) ' ∆m1+m2 . (19)

We show this by starting from a DM model of the type
(m1,m2), namely

x(n+ 1) = F (1)(v(n;m1,m2, τ0)) (20)
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which we assume to be accurate up to order ∆m1+m2 .
Moreover, we can claim that, as long as the distance
between the two windows of a given pair is ∆-close to
the true delay τ0, the error of the corresponding model
does not change significantly. Accordingly, the dynamics
is equally well described by the model

x(n+ 1) = F (2)(v(n;m1,m2, τ0 − 1)). (21)

By now solving this latter equation with respect to x(n+
1 −m1) (assuming that no problems connected with the
invertibility of the nonlinear expression arise) and substi-
tuting in equation (20), we can write

x(n+ 1) = F (3)(v(n;m1 − 1,m2 + 1, τ0)) (22)

for some function F (3). In other words, the value of x at
time n+1 can be predicted on the basis of a window-pair of
the type (m1−1,m2+1) with the same order of magnitude
for the uncertainty, i.e. ∆m1+m2 (in fact, the additional
factor due to the error propagation in the inversion of the
second equation is a finite correction term, independent of
∆). By iterating the same argument, one can eventually
convince oneself that the accuracy of the model depends
only on the total number of points in the two windows, as
long as each single window is larger than md, the minimal
number of degrees of freedom to be reconstructed.

Finally, we briefly discuss the general case of how to
approximate multicomponent DDEs with multicompo-
nent DM-models. In order to avoid technicalities, we limit
ourselves to summarize the main steps, the whole deriva-
tion being straightforward. The generalization of the first
approach (leading to (1,m)-models in the scalar case) con-
firms the naive expectation based on the knowledge of the
scalar case, i.e., window pairs of the type (md,md + l)
guarantee an error of the order ∆l+2. In fact, in full anal-
ogy with the discussion of equation (17), one can conclude
that the formal integration of all equations allows approx-
imating the original DDE equation up to order ∆l+2 with
a “generalized” DM, where l + 1 past values of the scalar
feedback variable are required. A simple repetition of the
arguments presented in the first part of this section shows
that this vector map can be turned into a scalar one of
the type (md,md + l).

In the complementary case that has led to the
development of (m, 1)-models in the scalar case, the sce-
nario is much worse, since the derivative of each of the
d variables must be determined with the prescribed level
of accuracy. In order to fulfill this requirement, one must
transform the original DDE into a DM involving dmd vari-
ables in the first window. A by far larger number of vari-
ables is required as soon as d > 1.

4 Local indicators

Due to the discrete sampling rate and the well known nu-
merical instabilities in the computation of derivatives from
noisy data, the determination of a DDE model from exper-
imental data is unreliable. Therefore, it is more reasonable

to reconstruct DM-rather than DDE-models, since the in-
put information for a DM-model consists in the raw data,
without the need of computing derivatives. Anyway, our
discussion on how to determine the optimal model can
nevertheless be extended with minor modifications to the
determination of DDE-models as well.

There are several ways to quantify how well the ob-
served data fulfill a deterministic rule in a given recon-
struction space, such as the filling factor [20,21], the ACE-
method [22], and others [23]. For the sake of simplicity,
here we restrict our investigations to (m,m)-DMs,

y(n+ 1) = h(v(n;m, τ)). (23)

In the following, we shall use the one-step forecast error
σ(h;m, τ) = σ̄(h;m,m, τ), as a tool both to identify the
correct delay time and to construct a meaningful model.
In practice, one cannot deal with such a large space like
that of analytic functions A considered in the previous
section. Accordingly, one must first identify a proper class
of parameterized functions h to work with:

M(m) = {h(·; a) : R2m → R}, (24)

where the parameter a is varied to minimize the FCE. The
optimal choice of a specific class M(m) depends on the
problem under consideration. In practice, however, local
linear models or global models built by radial basis func-
tions [33] are generally quite successful. Here, we stick
to the former class. The average required by the defini-
tion (13) is obviously performed along the available time
series.

In practice, besides the fundamental problems
discussed in the previous section, there are several ad-
ditional limiting factors like a finite sampling time ∆,
measurement noise, finite number L of data, and the mis-
match between delay time and the actual sampling time,
i.e. mod(τ0,∆) 6= 0 (note that so far in the literature only
the case of no mismatch has been discussed). While the
effect of noise will be considered in the second part of
the paper with reference to a truly experimental system
[31], here we shall investigate whether the other limita-
tions may actually obstruct the model reconstruction.

The approach adopted in this section consists in the si-
multaneous identification of the model and determination
of the optimal m-value as well as of the delay time. This is
achieved by minimizing the forecast error σ which is noth-
ing but the “distance” of the reconstructed model (23)
from the true dynamics.

It is important to notice that local closeness between
the model and the true dynamics does not necessarily im-
ply closeness of the global dynamics. We can see this by
discussing the case of a grossly wrong τ -value wherein we
can expect that y(n + 1) is almost totally uncorrelated
with the y-values belonging to the second (delayed) win-
dow. Accordingly, the information content of the second
window is totally irrelevant in the minimization proce-
dure of FCE. By invoking, as in the previous section, the
analyticity properties of the underlying signal y(t), we
can estimate that σM ' ∆m (since knowing the value
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Fig. 3. (a-b) Time series of the general-
ized Mackey-Glass system; (c) delay plot
of an extremal section. The values of ex-
tremal points y(ti), ẏ(ti) = 0 are plotted
versus their retarded values.

of y in m points is tantamount to knowing the first m
derivatives). This means that the FCE can be made very
small even in the absence of relevant information about
the force field (we recall that the delay is assumed to be
far from the correct value), a conclusion that appears ut-
terly illogical. In fact, this result tells us that in the small
sampling-time limit, it is possible to perform reasonable
short term predictions by simply exploiting the smooth-
ness of the signal itself. In particular, it is not even pos-
sible to distinguish the true dynamics from that of the
naive model y(m) = 0, which corresponds to polynomial
dependence on time, i.e. a dynamics which is neither sta-
tionary nor even limited. The conclusion to be drawn from
this observation is that the smallness of σM alone is not
enough to conclude that a meaningful model can be ex-
tracted from the raw data. This is the reason why we
devote the next section to the discussion of other, global,
indicators which do not suffer the same problems.

For md = 1 (scalar DDEs), the FCE proved to be a
very effective and numerically inexpensive strategy to de-
tect the unknown delay time τ0, since σM displays a pro-
nounced local minimum for τ = τ0 [26]. Before presenting
the numerical data, we will focus on the expected FCE ob-
tained for the “true” τ = τ0. From the discussion carried
on in the previous section, if m ≥ md, the FCE is at least
of the order of ∆2(m−md+1). By comparing this estimate,
derived for the correct value of τ , with the typical error
expected for a generic delay, we find that the latter one is
smaller, if m < 2(md−1), which is a clear nonsense. Since
the FCE is defined as the optimal error, whenever some
prior information is given, we can conclude that whenever
both mechanisms do apply (i.e. when τ = τ0), it is the
most efficient one which determines the actual FCE. In
other words, we do not expect any sensible dependence of
σM(m, τ) on τ if m < 2(md − 1) (preventing the detec-
tion of the delay time with the help of the FCE), while
a clear minimum should be seen in the opposite case. We
can explain that behavior of the FCE by noticing that
the two estimates of σM have been derived by invoking
different mechanisms: (1) continuity of the evolution,
(2) effective approximation of the delayed feedback model.

Since both mechanisms allow for high-quality short-term
predictions, both will lower the FCE and, supposedly,
any local indicator. Therefore, local indicators are not
appropriate tools to distinguish between the two mech-
anisms. Global indicators (as discussed in the next sec-
tion) are good candidates to also detect the delay times
for m < 2(md − 1). Anyway, the above inequality rep-
resents a necessary condition to be satisfied by a local
indicator (such as the FCE) for a correct identification of
the delay in the worst possible case.

In the following we discuss the problem of model
reconstruction with reference to the generalized Mackey-
Glass system [30]

ẏ(t) =
ay(t− τ0)

1 + y10(t− τ0)
+ x(t), (25)

ẋ(t) = −ω2y(t)− ρx(t)

which can be easily transformed into a second order (d =
2), neutral DDE

ÿ(t) = −ω2y(t)− ρẏ(t) + ω2f(y(t− τ0))

+
df(y(t− τ0))

dy(t− τ0)
ẏ(t− τ0). (26)

The parameters are chosen as a = 3.0, ρ = 1.5, ω = 1.0,
and τ0 = 9.83, for which the Kaplan-Yorke dimension of
the attractor is DKY = 7.2. For ρ = ω2 and ρ → ∞,
the above equation reduces to the standard Mackey-Glass
system by eliminating adiabatically the variable x(t).

For the analysis, we use a time series of the variable
that is fed back, y(t), with a sampling time ∆ = 0.1.
Notice that with this choice of ∆, the retarded values y(t−
τ0) lie outside the time lattice if y(t) corresponds to one
of the sampled values. In Figure 3 portions of the time
series and a delay plot of an extremal section ẏ(ti) = 0
are presented. The effect of the second component x in
the dynamical equation (25) can be clearly visualized in
the delay plot (with the delay being close to the delay time
τ0), since the intersection points of a scalar system have
to lie on a curve in such a representation [20].
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Fig. 4. One-step forecast error of an (m,m)-model as function
of τ . From top to bottom, the curves refer to m = 1, 2, and 3,
respectively.

Table 1. Estimate of the delay time for different embedding
dimensions.

m = 1 m = 2 m = 3

τ̂(m) 9.8 ± 0.1 9.9 ± 0.1 9.7 ± 0.1

We have numerically investigated σM(m, τ) for
different choices of m and τ in a local linear model. The
FCE is computed taking into account time series of length
L(m = 1) = 50 000; L(m = 2) = 100 000; L(m = 3) =
200 000. From the data reported in Figure 4, it is inter-
esting to notice that a pronounced minimum of σM is ob-
served even for m = 1, when, a priori, there is no reason
to expect a faithful reproduction of the original dynamics.
Such a result is the consequence of a general feature of dis-
sipative systems: the various components are not equally
“active”. Indeed, as long as the attractor is highly dimen-
sional, the feedback term can be viewed as a noise term. In
the absence of this “noise” source [34], the original system
reduces to an ordinary differential equation, whose attrac-
tor fills a manifold of dimension smaller than md. The
addition of the noise “thickens” the distribution along all
directions in the state space, the width of the distribution
depending on both transverse stability and noise ampli-
tude. Accordingly, it may happen that the role of some
components (corresponding to rather stable directions)
in a multidimensional DDE is just to blur the distribu-
tion generated by a suitable DDE with less components.
This is, to some extent, what happens in our system as
clearly seen in Figure 3c, where the points cluster around
a smooth curve which is the expected shape for the scalar
Mackey-Glass system. A (m = 1)-model will detect this
curve, leading to a local minimum in the FCE.

The position of the minimum is an estimate τ̂(m) of
the delay time. A parabolic approximation of the FCE
around the minimum yields the data reported in Table 1.

The estimated values agree with the correct value τ0 =
9.83 within the errors due to the finiteness of the sampling
time.

Some comments are in order about the behaviour of
the FCE. First of all, let us notice that a local minimum
is observed also for zero delay. This minimum is due to the
fact that we pass from a system of two windows of length
m to a single window of double length. According to the
arguments put forward in the first part of this section, we
have to expect an accuracy of the same order as for the
leading minimum. However, this accuracy cannot corre-
spond to an equivalent accuracy of the global dynamics
as the information about the feedback is missing. More-
over, we notice that the plateaus of the various curves
decrease for increasing m. This is qualitatively in agree-
ment with the considerations presented in the first part of
this section about grossly wrong delays. However, there is
no quantitative agreement about the scaling dependence
on m: we attribute this to the existence of residual cor-
relations between y values even when they are some time
units apart.

Analogous considerations can be made for the height
of the minimum that decreases less than expected on the
basis of the general considerations discussed in the previ-
ous section. In this case, we have identified in the accuracy
of the local linear model and in the finiteness of the num-
ber of points the main limiting factors which prevent σM
from being smaller for m = 3.

5 Global indicators

We have seen that the FCE is a useful tool to decide
whether a reconstructed model ĥ is locally close to the
observed dynamics. Nevertheless, there is neither guar-
antee that the model dynamics remains confined to the
region where it has been originally defined nor guarantee
that the dynamics does not converge to a smaller subset
(e.g., a fixed point or a limit cycle). In other words, the
smallness of the FCE σM is a necessary but not sufficient
condition to establish whether a given model provides a
globally faithful reconstruction. To test this, we iterate the
models ĥ for different m-values and the optimal choice of
the delay time, τ = τ̂0(m) to generate some typical time
series {ŷm}. We consider a model as valid, if the result-
ing attractor is “close” to the original one. To this aim,
we introduce and utilize the cross forecast error, compute
the power spectrum, the probability distribution of the
sampled variable, and the Lyapunov spectrum as tools to
establish altogether the validity of a given model.

However, before discussing all such indicators, it is
instructive to perform a qualitative analysis of the gen-
eralized Mackey-Glass system (25) for m = 1, 2, 3 and the
optimal choice of the delay time (as identified in the pre-
vious section). The resulting time series {ŷm} (of length
L = 100 000) reveal a qualitative good agreement with the
original series only if m ≥ 2. Indeed, for m = 1, the time
series ŷ1 is asymptotically attracted to either a strictly
positive or strictly negative region (see Fig. 5). Indeed, at-
tractors with a specific sign exist in the standard Mackey-
Glass system, where the unstable fixed point y = 0 acts as
an “impenetrable” domain boundary separating the two
coexisting attractors (changes of sign can exist only if they
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Fig. 5. Iterated time series {ŷm} of
the (m = 1)-model: (a) convergence to
an attractor with purely positive val-
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namics; (c) delay plot of an extremal
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Table 2. The global distance defined in equation (27) for dif-
ferent values of m.

m 1 2 3

χ(m) 1.197 0.032 0.026

are present in the initial condition; during the evolution,
once disappeared, they cannot be generated again). Since,
for m = 1, the second variable is obviously absent, it is
not surprising that the reconstructed dynamics exhibits
typical features of the standard Mackey-Glass system.

As this eventual convergence towards either positive
or negative values persists, independently of the accuracy
used in the model reconstruction and of the number of
data points, we must rule out the possibility that md = 1,
i.e. that a minimal approximate model can be constructed
with just one component.

The problem of quantifying the “closeness” between
the original time series y and the iterated time series
ŷm cannot be faced by measuring to what extent the
model-generated time-series remains all the way close to
the original time-series. In fact, because of the chaotic
properties of the evolution, an exponential separation al-
ways occurs which can hide the statistical equivalence
of the two time-series. The most appropriate approach
would consist in defining and measuring the distance be-
tween the two probability distributions. The natural space
where this question should be formulated is the (2m+ 1)-
dimensional space S introduced in Section 3, i.e. the same
space where the FCE is estimated and the dynamical rule
reconstructed. There are various ways to define a distance,
such as the Kullback-Leibler information [35] or the cross
correlation sum [36]. Unfortunately, a meaningful imple-
mentation is a rather delicate matter. For instance, in the
case of the Kullback-Leibler information, one needs suf-
ficiently many data to get rid of statistical fluctuations
in the local probabilities. Therefore, we have preferred
to introduce a more robust geometrical indicator which,
although carrying less information, can be satisfactorily
complemented with the implementation of other tools.

For any point P ∈ {y}, determined by following the
original trajectory, we identify the closest template used
to construct the local linear model along the iterated time
series {ŷm} (after a suitable transient) and measure the
distance d(n) of P from such a 2m-dimensional surface.
By averaging the square distances over all points P , we
finally obtain the global indicator

χ(m) =

√
1

N − n0

∑N
n=n0

d2(n)
〈y2〉 − 〈y〉2 (27)

where n0 is such that the components of v(n;m, τ) are all
in {y(n)}. The definition of χ(m) is essentially the average
forecast error along the time series {y} on the basis of a
model of the time series {ym}, the latter being restricted to
the attractor region (cross forecast error [37]). The results
are presented in Table 2.

As a result of the confinement of the dynamics to a
region with strictly positive values, the distance χ(m) is
large for m = 1 (actually, so large that it compares with
the standard deviation of the data). For m ≥ 2, χ(m)
decreases substantially (and could be further reduced by
increasing the number of data points). Accordingly, the
minimal choice md = 1 does not yield a faithful recon-
struction, while the hypothesis md = 2 is already suffi-
ciently good to be almost indistinguishable from further
refinements (with the reasonable amount of data points
adopted in our simulations).

Nevertheless, as already anticipated, such an indicator
does not necessarily give a definite answer. In fact, we
can imagine two distributions with the same support but
grossly different densities. A geometrical indicator such as
χ(m) would likely fail to identify at once such important
differences since small distances would be found for all
points (only a finer analysis could possible allow detecting
an insufficient quality of the reconstruction).

Therefore, we have decided to compute other quanti-
ties which have also a direct physical meaning. In Fig-
ures 6 and 7, we compare the spectra and the histograms
of the original time series and of the iterated time se-
ries ŷ2, ŷ3. A good agreement is achieved in both cases.
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Since no significant improvements are found in going from
m = 2 to m = 3, we can confirm the previous conjecture
that md = 2 is the minimal number of components neces-
sary for a good reconstruction.

As a consequence of a successful modelling, it is not
only possible to forecast the evolution in the real space,
but also to extract information about the tangent space.
In particular, one can compute the Lyapunov spectrum
(LS) [24] for different choices of m (in correspondence of
the optimal value of the delay). We expect that the LS
grossly differs from the correct one whenever m is cho-
sen too small, so that we can use Lyapunov exponents
as a further global indicator to judge the quality of the
reconstructed model.

In our example of the generalized Mackey-Glass
equation, we estimated the LS for m = 1, 2, and 3. The
results are compared with the estimation of the spectrum
obtained by direct integration of the equations (see Fig. 8).
Again we observe large deviations for m = 1, while for
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Fig. 8. Lyapunov spectra of the generalized Mackey-Glass
system as estimated from the equations (solid line); from the
(m = 1)-model (dashed line); from the (m = 2)-model (dot-
ted line); from the (m = 3)-model (dot-dashed line). The inset
shows a blow-up of the largest Lyapunov exponents.

m ≥ 2, the LS is rather close to the true spectrum, thus
confirming once more the scenario suggested by the other
indicators.

While it is not the goal of this paper to derive general
quantitative estimates of the various sources of errors4, we
would finally like to draw the attention of the reader to
some possible effects of dynamical noise. In fact, besides
downgrading the quality of the model predictions, dynam-
ical noise can mask the presence of additional degrees of
freedom. Once more, the Mackey-Glass equation is a sim-
ple system to illustrate this phenomenon, since additional
noise in the scalar model can induce jumps from positive to
negative values of the variable y (as we have numerically
verified), thus making the evolution practically indistin-
guishable from that of a noisy generalized Mackey-Glass
equation. In other words, the problem of a correct identi-
fication of the deterministic components depends on the
possible/required accuracy of the modellization. In some
cases, it might even be desirable to model only the gross
nonlinear features in terms of a few variables while as-
similating all the others to a sort of background noise
indistinguishable from a true noise.

We conclude with a remark about the length of the
time series. It has been emphasized by some authors that
the number of points necessary to estimate the delay time
in a scalar system series can be quite small (say 500–1000)
compared to the number of data points required in con-
ventional nonlinear time series analysis. In principle, we
can confirm this result for multi-component systems and
a single time-delay feedback. On the one hand, the dis-
covery of hidden variables requires embedding the data
in spaces of increasingly higher dimensions (though much
smaller than the dimension of the entire phase space) and

4 In the second part paper [31] we shall see that dynamical
and measurement noise do not prevent a meaningful extraction
of information from experimental data.
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thus an increasingly larger number of data points. On
the other hand, since we do not aim at detecting scale
invariant properties, the number of points required to ob-
tain statistically significant results for the estimation of
the delay time can be comparably small.

6 Open problems

In this paper we have shown that time-delayed feedback
systems can be investigated on the basis of a single valued
time series. In particular, we have seen that the dynamics
can be reconstructed in low-dimensional state-spaces even
when the attractor dimension can be arbitrarily large.
This result has been obtained by restricting ourselves
to the case where only one variable is fed back with a
fixed specific delay time τ0. Two possible generalizations
of this setup can be conceived that might be of interest in
practical applications.

First, one can assume that the single feedback variable
acts with several different delays. As long as the number
of such interactions is finite, no dramatic changes are ex-
pected from a theoretical point of view: instead of working
with a “two-window” embedding, it should suffice to to use
an (n + 1)-window embedding, where n is the number of
delays. This is a straightforward generalization, as long as
the windows do not overlap. Of course, the advantage of
a low dimensionality of the state space is lost as soon as
n becomes large, but for only a few delays it might still
work reasonably well. Completely different is the situation
when we have to deal with a continuous spectrum of de-
lays. In this case we expect this method to fail, as it is no
longer possible to reconstruct the equations of motion in
a low-dimensional manifold.

A second possible generalization consists in sticking to
a single delay time τ0, but admitting that several variables
are fed back. This is similar to the case where we measure
the wrong variable, as only a scalar variable is used to
reconstruct the dynamics. This suggests that the length
of the two windows should be increased by some factor in
this case.

Another open problem concerns the uncertainty
affecting a DM model that arises from the model mis-
match due to the supposedly continuous-time dynam-
ics. In this paper, we have employed perturbative argu-
ments to estimate the order of magnitude of the FCE,
when the windows are not too long. However, this is
still insufficient to draw mathematically rigorous conclu-
sions about the convergence properties of DM models to-
wards the expected continuous-time limit. In fact, a non-
perturbative approach is presumably necessary to deal
with large window-lengths, besides the inclusion of addi-
tional information about the dynamical behaviour of the
process under investigation. This is a hard task that ex-
tends a general and still unsolved problem: that of es-
timating the indeterminacy of an optimal prediction (on
the basis of the standard embedding approach) for a high-
dimensional deterministic process.
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